II. EVALUATION OF RESPONSE

A. GEOMETRY OF A SUBMARINE

A typical submarine hull is considered as a generic body of revolution, which is
rotated about a line parallel to the center-line, as described by Jackson (1992) [Ref. 3]. It
has a length/diameteL/D) ratio of six and a maximum diameter atl0.Zhe body is
composed of three main sections, as shown in Figure 1 [Ref. 3]. The forward section is
called the entrance, which is a portion of an ellipsoid of revolution. The middle section is
the parallel middle body (PMB) with a cylindrical shape. The third section is the after end
called the run, which is composed of a paraboloid of revolution. The entrance has a
length, L , of 2.4 diameters. The run has a lendgth, of 3.6 diameters. The algebraic
sum of the lengthd,;, L5, and the length of the PMB_pys , is the overall length of the

hull.




Figure 1. Submarine Geometry [Ref. 3]

The body coordinates, which define the forward and aft shapes are given by,
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The values ok andx, are the offsets from the maximum diameter, @raohdy, are the
radii at the respective offset points.

The exponentaf andry) in Equations (1) and (2) are the shape factor
coefficients, which control the shape of the fore and aft bodies, respectively. Higher
values of these coefficients correspond to fuller hull shapes, and lower values to finer
shapes. The effects of changing the shape factor coefficients on the hull shape are shown
in Figures 2 and 3, where the hull shapes for three values of the shape factors 2, 3 and 4
are shown. In this study, it is assumed that the total volume of the ship remains the same
(so that ship displacement does not vary), while either overall length or diameter remains
the same. We refer to the first case as the limited length case or inactive diameter
constraint, and to the second case as the limited diameter case or inactive length
constraint. Both of these two cases will be analyzed in our parametric studies.

If one were to use equations for true ellipsoids and parabolas, the entrance and the
run would be too fine for a modern submarine. The displacement can be increased by

using larger shape factors or highefs. The prismatic coefficientsGy, andCy; ,are



used to calculate volumes. For a cylinder its prismatic coefficient is 1. For a submarine-

like
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Figure 2. The effect of changing the shape factors for the limited diameter case.
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Figure 3. The effect of changing the shape factors for the limited length case.
body the prismatic coefficient can be evaluated in terms of its geometry. Using the above
conceptLpyg is the difference between the overall length and six times the diameter, that
is L-6D. A method of calculating the volume of the entire hull can be developed by
calculating the volume of each section separately by using the expressions abdye. Let
V,, andVpyg denote volumes of the entrance, the run, and the PMB, respectively. The

resulting equations are:

V, = "%Z(Cpf 2.4D) 3)
V, = "'Z : (C,.36D) (4)
Vews = 77122 (L - 6D) (5)

The above can be combined into the following,
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It can be easily shown that the prismatic coefficients can be calculated as,

C. =[@-x")"" dx (7)
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These integrals are numerically evaluated using the built in “quad” function in Matlab,

although analytic evaluation is possible,
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where the Gamma function is defined in Ref. 4 (Abramowitz and Stegun, 1970).
Initially, the total volume is calculated for the values &f360 ft.,D = 30 ft.,
n, = 3.0 andh = 3.0, by using Equations (6) through (8), and yielded a value of
217337.73 ft This value is kept constant throughout the calculations.
For the limited length cask,is kept constant at 360 ft. The shape faatgend
n are varied between 2.0, 3.0 and 4.0. The prismatic coeffiGgnemdC,; are
calculated for each of them by evaluating the integrals in Equations (7) and (8)
numerically. Then the corresponding diameters are found by solving for the maximum
hull diameteD in Equation (6). This is achieved by solving the following cubic equation,
(36Cpa+ 24Cs — §D° + LD? —% =0 (11)
Two iterations ensure that the solution converges to the value which meets the
requirement to havie,=3.6D andL{=2.4D.
For the limited diameter cade,is kept constant at 30 ff,,; andC, are
calculated the same way as the limited length case. Then the corresponding lengths are

found by solving foL in Equation (6).The resulting equation becomes,

L= D%% D® -36C,, - 24C, +@ (12)



Two Matlab programs (Appendix) are used to perform the calculations for each
case. In the limited length case, the program “limlen” starts by inputtiaugdry, and
computes the corresponding diameter. Similarly, for the limited diameter case, the
program “limdia” computes the length for the giverandn; values. These values are

used as an input in the strip theory seakeeping prediction program.

B. MOTIONS IN A SEAWAY

Wave patterns in an open sea are ever changing with time and space, in a manner
that appears to defy analysis be it linear or second order Stokes [Ref 5]. Ambient waves
on the surface of the sea are dispersive as well as random. Random refers to the character
of the wave height distribution. In a continuous distribution, the sinusoidal waves have
continuously distributed amplitude and phase so that in summation the variation of wave
height with time is not systematic in any respect, but random. The generating mechanism
is, predominantly, the effect upon the water surface of wind in the atmosphere. The
practically useful data extractable from a random wave rd€ordk its spectral density,

S(w). The randonin(t) record is processed in such a way to produce a cu§{eop¥ersus

wave frequencyp. The spectral density is obtained from a wave height record taken over

a time period for which the sea conditions are assumed to be unchanging, in an average
sense (stationary). This corresponds to a certain sea state. The f&wi)ris called

the spectral energy density or simply the energy spectrum. More specifically, this is a
directional energy spectrum; it can be integrated over all wave directions to give the

frequency spectrum

10



2
Sw)=; "qw.6)d . (13)

Usually in the fields of ocean engineering and naval architecture it is customary to
assume that the waves are long crested which means the fluid motion is two dimensional
and the wave crests are parallel. With such a simplification it is possible to use existing
information for the frequency spectrum (13), which is based on a combination of theory
and full scale observations. The sea spectrum (spectral density) gives us information on
mean wave height within finite frequency bands. Since most of the wave energy is within
a relatively small range of wave lengths where it may resonate the ship, we can model the
seaway as a narrow band random process.

For most purposes we are interested primarily in the larger waves. The most
common parameter that takes this into account is the significant wave kkigtefined

as the average of the highest one third of all waves. This is computed by

Hys = 4.0(my)"". (14)
In this equationmy is the area under the spectr8fw) integrated over the entire range of
frequenciesw. An average frequency of the spectrum can be defined as the expected
number of zero upcrossings per unit time, that is, the number of times the wave amplitude
passes through zero with positive slope. The final result here is
2
w, = %g . (15)

The average period between zero upcrossings is

T =Tcon M (16)
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More meaningful frequency parameters can be obtained from the set of moments,

which depend on spectrum shape
m, =J'w” Jw) dv , n=0,1,2,... (17)
0

In particular, the aream, is the variance or the total energy of the spectrum. wiss
variance of velocity anih, is variance of acceleration.

A good model for fully developed seas is the classical Pierson-Moskowitz
spectrum. This spectral form depends upon a single parameter which is the significant
wave height. It is intended to represent point spectrum of a fully-developed sea. Fetch
and duration are assumed to sufficiently large so that the sea has reached steady state, in a
statistical sense. This spectral family should be recognized as an asymptotic form,
reached after an extended period of steady wind, with no contamination from an
underlying swell. Using the spectral family, along with the similarity theory of S. A.
Kitaigorodskii, Pierson and Moskowitz (1964) [Ref. 5] arrived at the following analytical

formulation for ideal sea spectra,

2 U n [f O
- 0008y . oro03 9 F0O, (18)
> OH,,.0?

S{w)= = e Wk
where
S*(w) = one-sided incident wave spectrum
g = acceleration of gravity

H.. = significant wave height

w = wave frequency
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In Figure 4 we can observe typical Pierson-Moskowitz wave spectra for 5 m. significant

wave height.
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Figure 4. Typical Pierson-Moskowitz wave spectra

Any conclusions drawn on the seakeeping behavior of a ship based on the critical

examination of motion response in regular waves can, at best, assume only academic

significance. The establishment of the seakeeping behavior of a ship has to be done in a

realistic seaway. With the spectral description of sea waves given before, we can return to

the subject of body motions and generalize the results of regular harmonic waves. If the

sea waves are described by the random distribution , and if the response of the body to
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each component wave is defined by a response amplitude op&f@i®y, the body

response will be
n;(t)=0 1z (w,0)e* dAw,H) . (19)
The principal assumption here is that linear superposition applies, as it must in any event
for the underlying development of the RAO and the spectrum.
Like the waves themselves, the response (19) is a random variable. The statistic of
the body response are identical to the wave statistics, except that the wave energy

spectrumS is multiplied by the square of the RAO (this is a property of linear systems).

Thus, if the subscrig® represents any body response, we have

Su(®) = Z:()” 40) . (20)
whereZy(w) is the RAO of the respong andS(w) the spectrum of the seaway. Equation
(20) can then be utilized to obtain the spectrum of the resporisigure 5 displays the
spectrum of response of the relative vertical motion at the top of our model submarine’s
sail while submarine’s forward speed is 5 Knots and it is at 3 submarine diameter depth.
Also seaway is modeled by Pierson-Moskowitz spectrum with 5 m. significant wave
height and head seas.

To a large extent, equation (20) provides the justification for studying regular
wave responses. The transfer funcifw) is valid not only in regular waves, where it
has been derived, but also in a superposition of regular waves, and ultimately in a
spectrum of random waves. Generally speaking, a vessel with favorable response

characteristics in regular waves will be good in irregular waves, and vice versa.

14



30

20 .

10 \ |

AN
D

\
T

—_—

relative vertical motion at top of the sail (nondimensional)
o
T
|

0 ] | | | | | | | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

wave frequency (rad)

Figure 5. Spectrum of response for relative vertical motion
The average period between zero upcrossings was determined by Equation (16),

and the number between zero upcrossings per unit time is

R
NR= 1 M (21)

4 R

21\ my
where mi, m} are the moments of the particular respdRs@hose spectral density is

given by Equation (20). Equation (21) can be generalized for the case of the average

number of upcrossings above a specified levas in

R 0 2 0
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Equation (22) can be utilized to determine such events deck wetness and bow slamming
for a surface ship or periscope submergence and sail broaching for a near surface
submarine. If represents height of the periscope over calm sea surface level, the number

of periscope submergence events per hour is

0
N, =3600-= |2 exprt
2mr\'m, U

N

O, 23

- (23)
wherem, , m, are the moments of the vertical relative motion spectrum at periscope. The
same equation can be used to estimate the frequency of sail broachirfgsuhishituted

by the distance between top of the sail and encountered wave surface. Ofnaounse,

are now the moments of the relative motion spectrum at top of the sail.
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